Math 60670 Homework 4

Due Monday, February 24.

Problem 1: Let ∇ be a torsion-free linear connection, and ω a 1-form. Show that

$$d\omega(X,Y) = (\nabla_X \omega)(Y) - (\nabla_Y \omega)(X)$$

for any $X, Y \in \mathcal{X}(M)$.

Problem 2: Let ∇ be a linear connection. Given a curve $\gamma(t) : I \to M$ and a vector $V \in T_{\gamma(s)}M$ (for some $s \in I$), let us write $P_{\gamma,V}(t)$ for the parallel transport of V along γ with respect to ∇ . If $X, Y \in \mathcal{X}(M)$ and $p \in M$, show that

$$\nabla_X Y|_p = \lim_{t \to 0} \frac{1}{t} (P_{\gamma, Y(\gamma(t))}(0) - Y(0))$$

for any curve $\gamma: (-\epsilon, \epsilon) \to M$ satisfying $\gamma(0) = p, \gamma'(0) = X$.

Problem 3: Let (M, g) be an oriented Riemannian manifold. Recall that if ω is a k-form on M, and X is a vector field, then $\iota_X \omega$ is the (k-1)-form obtained by contracting against X in the first slot:

$$(\iota_X\omega)(V_1,\ldots,V_{k-1}):=\omega(X,V_1,\ldots,V_{k-1}).$$

The divergence operator div : $\mathcal{X}(M) \to C^{\infty}(M)$ is defined by

$$d(\iota_X dV) = \operatorname{div}(X) dV.$$

A) Show that if M is a compact manifold-with-boundary, then

$$\int_{M} \operatorname{div}(X) dV = \int_{\partial M} \langle X, N \rangle dV_{\partial M},$$

where $dV_{\partial M}$ is the volume-form on ∂M with the inducted metric and orientation, and N is the outwards pointing conormal of ∂M .

B) Show that if $\phi \in C^{\infty}(M)$, then div satisfies the following product rule:

$$\operatorname{div}(\phi X) = <\operatorname{grad}\phi, X > +\phi\operatorname{div}(X).$$

C) Using the above or otherwise, show that in local coordinates div can be written as

$$\operatorname{div}(X) = \frac{1}{\sqrt{g}} \partial_i(\sqrt{g}X^i), \quad g = \operatorname{det}(g_{ij}).$$

D) Show that if ∇ is the Levi-Civita connection, then

$$\operatorname{div}(X) = \operatorname{tr}(\nabla X) \equiv (\nabla X)_i^i \equiv \sum_i \langle e_i, \nabla_{e_i} X \rangle,$$

 $(e_i \text{ being any an ON basis of the tangent space}).$