Math 60670 Homework 9

Due Tuesday April 23.

Problem 1: Let $\left(M^{n}, g\right)$ be a Riemannian manifold, and $p \in M$, and x^{i} normal coordinates of M about p.
A. Show that the metric $g_{i j}$ in these normal coordinates admits the Taylor expansion about 0 :

$$
\begin{equation*}
\left.g_{i j}\right|_{x}=\delta_{i j}-\left.\frac{1}{3} R_{i k l j}\right|_{p} x^{k} x^{l}+O\left(|x|^{3}\right) \tag{1}
\end{equation*}
$$

Hint: Let $\gamma(t)=t v$ be a radial geodesic, and $J(t)=t W^{i} \partial_{i}$ be a Jacobi field along γ, and compute the first four t-derivatives of $|J(t)|^{2}$ at 0 in two ways.
B. Use this to show that the volume form has the expansion

$$
\left.d V\right|_{t v}=1-\left.\left(t^{2} / 6\right) \operatorname{Ric}\right|_{p}(v, v)+O\left(t^{3}\right)
$$

and thereby deduce that the volume of a small geodesic ball $B_{r}(p) \subset M$ has the expansion

$$
\begin{equation*}
\operatorname{Vol}_{g}\left(B_{r}(p)\right)=\omega_{n} r^{n}\left(1-\frac{r^{2} \operatorname{Scal}(p)}{6(n+2)}+O\left(r^{3}\right)\right) \tag{2}
\end{equation*}
$$

where ω_{n} is the Euclidean volume of the Euclidean unit ball. Hint: use HW7 Q4.
C. Bonus: Compute one further term in expansion (1) to get that the error in (2) is in fact $O\left(r^{4}\right)$.

Problem 2: A Riemannian manifold $\left(M^{n}, g\right)$ is called Einstein if $\operatorname{Ric}(X, Y)=$ $\lambda g(X, Y)$ for some function $\lambda: M \rightarrow \mathbb{R}$.
A. Show that if M is Einstein and connected and $n \geq 3$, then λ is constant. Hint: In geodesic coordinates at p, note the second Bianchi identity is $\left.\partial_{s} R_{i j k l}\right|_{p}+\left.\partial_{i} R_{j s k l}\right|_{p}+\left.\partial_{j} R_{i s k l}\right|_{p}=0$, then take the trace twice.
B. Show that if M is Einstein and connected and $n=3$, then M has constant sectional curvature.

Problem 3: Show that the paraboloid $\left\{(x, y, z) \in \mathbb{R}^{3}: z=x^{2}+y^{2}\right\}$ is complete, non-compact, and has postive sectional curvature.

