Math 60670 Homework 8

Due Thursday April 11.

Problem 1: A Riemannian submanifold $M \subset (M, \bar{g})$ (with the induced metric $g = \bar{g}|_{TM}$), is called totally geodesic if for every $p \in M$, $v \in T_pM$, the \bar{g} -geodesic γ with initial conditions $\gamma(0) = p$, $\gamma'(0) = v$ lies in M. Show the following are equivalent:

- A. M is totally geodesic,
- B. Every g-geodesic in M is also a \bar{g} -geodesic in \bar{M} ,
- C. The second fundamental form of M vanishes.

Problem 2: Let $M \subset \mathbb{R}^3$ be the catenoid, which is the surface of revolution obtained by revolving the curve $x = \cosh z$ around the z-axis. Show that M has zero mean curvature, i.e. show the trace of the second fundamental form is zero.

Problem 3: A geodesic triangle in a Riemannian 2-manifold (M^2, g) is a domain Ω with piecewise-smooth boundary $\partial\Omega$ consisting of three geodesics meeting at three vertices. If M has constant Gauss curvature K, show that the sum of interior angles of any geodesic triangle is $\pi + KA$, where A is the area of Ω .

Problem 4: Let $M \subset (\overline{M}, \overline{g})$ be a compact, embedded Riemannian submanifold, and let NM be the normal bundle, i.e. the subbundle of $T\overline{M}$ consisting of vectors $v \in T_x\overline{M}$ for $x \in M, v \perp T_xM$. Let $(NM)_{\epsilon} = \{V \in NM : |V| < \epsilon\}$, and let $M_{\epsilon} = \{x \in \overline{M} : dist(x, M) < \epsilon\}$.

A. Show that for all small $\epsilon > 0$, the exponential map restricted to $(NM)_{\epsilon}$ is a diffeomorphism from $(NM)_{\epsilon}$ to M_{ϵ} . For these ϵ , the open set M_{ϵ} is called a tubular neighborhood of M.

B. If r(x) denotes the distance from $x \in \overline{M}$ to M, show that r^2 is a smooth function on any tubular neighborhood M_{ϵ} . Give an example where r^2 is not smooth on all of \overline{M} .