Math 60670 Homework 6

Due Tuesday, March 5.

Problem 1: For a given linear connection ∇ on a Riemannian manifold (M, g), show that the following are equivalent:
A) ∇ is compatible with g;
B) $\nabla g \equiv 0$;
C) if V, W are vector fields along a curve $\gamma(t)$, then

$$
\frac{d}{d t} g(V, W)=g\left(\frac{D V}{d t}, W\right)+g\left(V, \frac{D W}{d t}\right)
$$

D) if V, W are parellel vector fields along γ, then $g(V, W)$ is constant in t;
E) parallel translation is a linear isometry $T_{\gamma\left(t_{1}\right)} M \rightarrow T_{\gamma\left(t_{2}\right)} M$, for any times t_{1}, t_{2}.

Problem 2: Let $\phi:(M, g) \rightarrow(\tilde{M}, \tilde{g})$ be a diffeomorphism between connected Riemannian manifolds M, \tilde{M}.
A) Suppose ϕ is a Riemannian isometry. Show that $\phi \circ \exp _{p}=\left.\exp _{\phi(p)} \circ D \phi\right|_{p}$ whereever this is defined.
B) Let $\tilde{\phi}$ be another Riemannian isometry $(M, g) \rightarrow(\tilde{M}, \tilde{g})$, and suppose there is a point $p \in M$ so that $\phi(p)=\tilde{\phi}(p)$ and $\left.D \phi\right|_{p}=\left.D \tilde{\phi}\right|_{p}$. Show that $\phi=\tilde{\phi}$.
C) Show that ϕ is a Riemannian isometry if and only if ϕ preserves distances, i.e. $d_{g}(p, q)=d_{\tilde{g}}(\phi(p), \phi(q))$ for all $p, q \in M$.
D) (Bonus) Show that part C) holds even if ϕ is only assumed to be a distance-preserving homeomorphism.

Problem 3: A. Show that isometries between Riemannian manifolds take geodesics to geodesics.
B. Consider the half-space model of hyperbolic space \mathbb{H}^{2}, i.e. $\mathbb{R}_{+}^{2}=$ $\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$ equipped with the hyperbolic metric $g=\left(d x^{2}+d y^{2}\right) / y^{2}$. Show that the geodesics of $\left(\mathbb{R}_{+}^{2}, g\right)$ are vertical half-lines and half-circles that intersect the "boundary" $\{y=0\}$ orthogonally. Hint: Use part A and HW3 Problem 3.
C. Deduce that every geodesic in \mathbb{H}^{2} can be extended for all time, i.e. \mathbb{H}^{2} is "complete."

