Math 60670 Homework 5

Due Tuesday, February 27.

Problem 1: A. The Laplacian of a function f is defined to be the trace of the Hessian: $\Delta f=\operatorname{tr}_{g}\left(\nabla^{2} f\right)$. Show that one can alternatively write

$$
\Delta f=\operatorname{div}(\operatorname{grad} f)
$$

and hence in coordinates

$$
\Delta f=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} \partial_{j} f\right), \quad g=\operatorname{det} g_{i j} .
$$

B. A function $u \in C^{2}(M)$ is called harmonic if $\Delta u=0$. If (M, g) is compact with no boundary, prove that any harmonic function is necessarily constant. Hint: Use HW4 Problem 3.

Problem 2: A) For v in some interval I, let $(r(v), z(v))$ be a smooth, regular curve in the $r-z$ plane, with $r>0$. Show that

$$
F(\theta, v)=(r(v) \cos (\theta), r(v) \sin (\theta), z(v)), \quad t \in I, \theta \in \mathbb{R}
$$

is a well-defined immersion. The image of F is the surface of revolution obtained by rotating the curve $(r(v), z(v))$ about the z-axis. The lines corresponding to $\theta=$ const, $v=$ const are called the meridians and parallels (respectively).
B) Show that the induced metric $F^{*} g_{\text {eucl }}$ in (θ, v) coordinates is given by

$$
g_{11}=r^{2}, \quad g_{12}=0, \quad g_{22}=r^{2}+z^{\prime 2}
$$

C) Show that that $\gamma=(\theta(t), v(t))$ is a geodesic if and only if

$$
\begin{align*}
\ddot{\theta}+\frac{2 r r^{\prime}}{r^{2}} \dot{\theta} \dot{v} & =0 \tag{1}\\
\ddot{v}-\frac{r r^{\prime}}{r^{\prime 2}+z^{\prime 2}} \dot{\theta}^{2}+\frac{r^{\prime} r^{\prime \prime}+z^{\prime} z^{\prime \prime}}{r^{\prime 2}+z^{\prime 2}} \dot{v}^{2} & =0 . \tag{2}
\end{align*}
$$

D) Deduce meridians are always geodesics. When is a parallel geodesic?
E) Show that equations (1), (2) have the following "first order" interpretation: (2) is (except for meridians, parallels) equivalent to the fact that the "energy" $\left|\gamma^{\prime}(t)\right|^{2}$ is constant; (1) is equivalent to the "Clairaut's relation:"

$$
r(v(t)) \cos \beta(t)=\text { const }
$$

where $\beta(t)$ is the angle made between $\gamma^{\prime}(t)$ and the parallel intersecting $\gamma(t)$.
F) Use Clairaut's relation to show that a geodesic of the paraboloid $r(t)=$ $t, z(t)=t^{2}$ which is not a parallel or meridian must intersect itself infinitelymany times.

