Math 60670 Homework 4

Due Tuesday, February 20.

Problem 1: Let ∇ be a torsion-free linear connection, and ω a 1-form. Show that

$$
d \omega(X, Y)=\left(\nabla_{X} \omega\right)(Y)-\left(\nabla_{Y} \omega\right)(X)
$$

for any $X, Y \in \mathcal{X}(M)$.

Problem 2: Let ∇ be a linear connection. Given a curve $\gamma(t): I \rightarrow M$ and a vector $V \in T_{\gamma(s)} M$ (for some $s \in I$), let us write $P_{\gamma, V}(t)$ for the parallel transport of V along γ with respect to ∇. If $X, Y \in \mathcal{X}(M)$ and $p \in M$, show that

$$
\left.\nabla_{X} Y\right|_{p}=\lim _{t \rightarrow 0} \frac{1}{t}\left(P_{\gamma, Y(\gamma(t))}(0)-Y(0)\right)
$$

for any curve $\gamma:(-\epsilon, \epsilon) \rightarrow M$ satisfying $\gamma(0)=p, \gamma^{\prime}(0)=X$.
Problem 3: Let (M, g) be an oriented Riemannian manifold. Recall that if ω is a k-form on M, and X is a vector field, then $\iota_{X} \omega$ is the $(k-1)$-form obtained by contracting against X in the first slot:

$$
\left(\iota_{X} \omega\right)\left(V_{1}, \ldots, V_{k-1}\right):=\omega\left(X, V_{1}, \ldots, V_{k-1}\right) .
$$

The divergence operator div: $\mathcal{X}(M) \rightarrow C^{\infty}(M)$ is defined by

$$
d\left(\iota_{X} d V\right)=\operatorname{div}(X) d V
$$

A) Show that if M is a compact manifold-with-boundary, then

$$
\int_{M} \operatorname{div}(X) d V=\int_{\partial M}<X, N>d V_{\partial M},
$$

where $d V_{\partial M}$ is the volume-form on ∂M with the inducted metric and orientation, and N is the outwards pointing conormal of ∂M.
B) Show that if $\phi \in C^{\infty}(M)$, then div satisifes the following product rule:

$$
\operatorname{div}(\phi X)=<\operatorname{grad} \phi, X>+\phi \operatorname{div}(X)
$$

C) Using the above or otherwise, show that in local coordinates div can be written as

$$
\operatorname{div}(X)=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} X^{i}\right), \quad g=\operatorname{det}\left(g_{i j}\right)
$$

D) Show that if ∇ is the Levi-Civita connection, then

$$
\operatorname{div}(X)=\operatorname{tr}(\nabla X) \equiv(\nabla X)_{i}^{i} \equiv \sum_{i}<e_{i}, \nabla_{e_{i}} X>
$$

(e_{i} being any an ON basis of the tangent space).

