Math 60670 Homework 3

Due Tuesday, February 13 in class.
Problem 1: Show there are vector fields X_{1}, X_{2}, Y on \mathbb{R}^{2}, such that on the x^{1}-axis $X_{1}=X_{2}=(1,0)$ and $Y=(0,1)$, but such that the Lie derivatives $\mathcal{L}_{X_{1}} Y \neq \mathcal{L}_{X_{2}} Y$. (So, one cannot use the Lie derivative to define a reasonable notion of "derivative of vector field along a curve").

Problem 2: The torsion T of a linear connection ∇ is defined by $T(X, Y)=$ $\nabla_{X} Y-\nabla_{Y} X-[X, Y]$, and ∇ is called torsion free if $T \equiv 0$.
A) Show that the torsion is a $(1,2)$-tensor.
B) Show that the Euclidean connection on \mathbb{R}^{n} is torsion free.
C) Prove that a linear connection ∇ is torsion-free if and only if the Christoffel symbols $\Gamma_{i j}^{k}$ in any coordinate frame are symmetric in i and j, that is $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$. (Caveat: this is not necessarily true in a non-coordinate frame).
D) Prove that ∇ is torsion free if and only if the covariant Hessian $\nabla^{2} u$ of any $u \in C^{\infty}(M)$ is a symmetric (0,2)-tensor.

Problem 3: Let \mathbf{U}^{2} denote the hyperbolic plane, i.e. the upper half-plane in \mathbb{R}^{2} with metric $h=\left(d x^{2}+d y^{2}\right) / y^{2}$. Let $\operatorname{SL}(2, \mathbb{R})$ denote the group of 2×2 real matrices of determinant 1 , and define an action of $A \in \mathrm{SL}(2, \mathbb{R})$ on points $z=x+i y \in \mathbf{U}^{2} \subset \mathbb{C}$ by

$$
A \cdot z=\frac{a z+b}{c z+d}, \quad A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2, \mathbb{R})
$$

Show this defines a smooth action of $\operatorname{SL}(2, \mathbb{R})$ on \mathbf{U}^{2} by isometries of the hyperbolic metric.

