Math 60670 Homework 2

Due Tuesday, February 6 in class.

Problem 1: Let $\phi: M \to \overline{M}$ be a smooth map, X, Y vector fields on M, $\overline{X}, \overline{Y}$ vector fields on \overline{M} , and suppose $\overline{X}|_{\phi(p)} = D\phi(X|_p), \overline{Y}|_{\phi(p)} = D\phi(Y|_p)$ for every $p \in M$. Show that $[\overline{X}, \overline{Y}]|_{\phi(p)} = D\phi([X, Y]|_p)$. Hint: First show that if $f \in C^{\infty}(\overline{M})$ then $\overline{X}(f)|_{\phi(p)} = X(f \circ \phi)|_p$ and $\overline{Y}(f)|_{\phi(p)} = Y(f \circ \phi)|_p$.

Problem 2: Let V be an n-dimensional vector spaces. Prove that the the space (1, 1)-tensors on V is naturally (i.e. independent of basis) isomorphic to the space of endomorphisms of V (i.e. the space of linear maps $V \to V$).

Problem 3: Let (x^i) , (y^{α}) be local coordinates defined in some $U \subset M$. Suppose A is a (1, 2)-tensor field which in the x-coordinate system can be expressed as

$$A = A^i_{ik}(x)\partial_{x^i} \otimes dx^j \otimes dx^k.$$

Show that in the y-coordinate system the components of A are

$$A^{a}_{bc}(y=y(x)) = \frac{\partial y^{a}}{\partial x^{i}} \frac{\partial x^{j}}{\partial y^{b}} \frac{\partial x^{k}}{\partial y^{c}} A^{i}_{jk}(x).$$

Use this to show explicitly that the result of contracting the i, j indices together is independent of choice of coordinates.

Problem 4: Show that T is a smooth (k, l)-tensor field on M if and only if T is a smooth, \mathbb{R} -multilinear function from k 1-forms and l vector fields to \mathbb{R} , which is also multilinear over $C^{\infty}(M)$. By "smooth" we mean that if $X_1, \ldots, X_l \in \mathcal{X}(M), \, \omega_1, \ldots, \omega_k \in \mathcal{X}^*(M)$, then $T(\omega_1, \ldots, \omega_l, X_1, \ldots, X_k) \in C^{\infty}(M)$.

Problem 5: Let (M, g) be an oriented Riemannian *n*-manifold, and let (x^1, \ldots, x^n) be coordinates compatible with the orientation in the sense that $(\partial_{x^1}, \ldots, \partial_{x^n})$ is a positively-oriented basis. Show that the volume form $dV = \sqrt{\det g_{ij}} dx^1 \wedge \cdots \wedge dx^n$.