Math 60670 Final

Due by 11:59pm Thursday May 9th. Send your exam to nedelen@nd.edu. You may use Lee's and do Carmo's books, the class notes, and previous homeworks and midterms from this class, but no other resources. You are allowed to quote theorems/lemmas/corollaries from the book or class or previous homework that we or the book have proven. You are not allowed to quote statements from the books that are given without proof (e.g. exercises).

Q1: A. Let $\left(M^{n}, g\right)$ be a complete Riemannian manifold $(n \geq 2)$, and suppose M admits a geodesic line, i.e. there is a geodesic $\gamma: \mathbb{R} \rightarrow M$ parameterized by arclength which is minimizing on any finite segment. By considering variations of the form $\phi(t) e_{i}(t)$, where $\left\{e_{i}(t)\right\}_{i}$ is an ON parallel frame along γ, show that the following inequality must be true:

$$
\int_{\mathbb{R}}(n-1) \phi^{\prime}(t)^{2}-\left.\operatorname{Ric}\right|_{\gamma(t)}\left(\gamma^{\prime}, \gamma^{\prime}\right) \phi(t)^{2} d t \geq 0 \quad \forall \phi \in C_{c}^{1}(\mathbb{R})
$$

B. Using part A, deduce that M cannot have positive Ricci curvature.
C. Use parts A, B to prove that any complete, non-compact $\left(M^{n}, g\right)$ with positive Ricci curvature can have only one end. (Hint: use a result from the Midterm).
C. Prove that that $S^{1} \times \mathbb{R}$ admits no complete metric of positive sectional curvature.
D. On the other hand, show that \mathbb{R}^{2} does admit a complete metric of positive sectional curvature. (Hint: use a result from Homework 9).

Q2: Let $\left(M^{n}, g\right)$ be a complete, connected Riemannian manifold, and f : $M \rightarrow \mathbb{R}$ a smooth function. Write ∇f for the gradient of f.
A. Suppose that $\nabla f \neq 0$ for all $x \in f^{-1}(0)$. Show that $S:=f^{-1}(0)$ is a smooth embedded hypersurface, $\frac{\nabla f}{|\nabla f|}$ is a choice of unit normal for S, and the second fundamental form of S (with the induced metric) can be expressed as

$$
B(X, Y)=-\frac{\nabla^{2} f(X, Y)}{|\nabla f|^{2}} \nabla f
$$

B. Suppose that $|\nabla f| \equiv 1$. Prove that the integral curves of f are geodesics. Deduce that the flow $\phi_{t}(x)$ of ∇f exists for all $t \in \mathbb{R}$. Bonus: show the integral curves are minimizing geodesics.
C. Suppose that $\nabla^{2} f \equiv 0$, and f is not constant. Prove that M isometrically splits off a line, in the sense that there is an $\left(\hat{M}^{n-1}, \hat{g}\right)$ so that (M, g) is isometric to $(\hat{M} \times \mathbb{R}, \hat{g}+d r)$. Hint: Use a result from the Midterm.

Q3: Let $\left(M^{2}, g\right)$ be a 2-dimensional complete, simply-connected Riemannian manifold with sectional curvature $K \leq 0$. Fix $p \in M$, and let $A(r)=$ $\operatorname{area}_{M}\left(B_{r}(p)\right), L(r)=\operatorname{length}_{M}\left(\partial B_{r}(p)\right)$.
A. Show that $A(r)$ is a smooth function of $r \in(0, \infty)$, and $A^{\prime}(r)=L(r)$, $L^{\prime}(r)=\int_{\partial B_{r}(p)} k d s$, where k is the geodesic curvature of $\partial B_{r}(p)$ w.r.t. the inwards normal.
B. Prove the Euclidean isoperimetric inequality: $4 \pi A(r) \leq L(r)^{2}$. Hint: Consider the function $f(r)=L(r)^{2}-4 \pi A(r)$.
C. Show that if at some radius equality holds $4 \pi A(r)=L(r)^{2}$, then $B_{r}(p)$ is isometric to the flat Euclidean ball of radius r in \mathbb{R}^{2}.

Q4: Is it possible (prove or disprove) to find a complete non-planar surface $S \subset \mathbb{R}^{3}$ so that:
A. For every $p \in S$, there is a line in \mathbb{R}^{3} passing through p contained in S ?
B. For every $p \in S$, there are two lines in \mathbb{R}^{3} passing through p contained in S ?
C. For every $p \in S$, there are three lines in \mathbb{R}^{3} passing through p contained in S ?

